ดาวแคระขาว
ดาวแคระขาว (อังกฤษ: White dwarf) หรือบางครั้งเรียกว่า ดาวแคระเสื่อม (Degenerate dwarf) เป็นดาวขนาดเล็กที่ส่วนใหญ่ประกอบไปด้วยอิเล็กตรอนที่เป็นสสารเสื่อม เนื่องจากดาวแคระขาวที่มีมวลเท่ากับดวงอาทิตย์จะมีปริมาตรใกล้เคียงกับโลก ทำให้มันมีความหนาแน่นสูงและมีกำลังส่องสว่างน้อยมาจากความร้อนที่สะสมไว้[1]
ดาวแคระขาวที่รู้จักในบริเวณใกล้เคียงกับดวงอาทิตย์มีประมาณคร่าว ๆ 6% ของดาวที่รู้จักในบริเวณใกล้เคียงกับดวงอาทิตย์[2] ในปี ค.ศ. 1910 เฮนรี นอร์ริส รัสเซลล์ เอ็ดเวิร์ด ชาลส์ พิกเคอริง และ วิลเลียมมินา เฟลมมิง ได้ค้นพบดาวแคระขาวเป็นครั้งแรกเนื่องจากเป็นวัตถุที่จางอย่างผิดปกติ[3], p. 1 ส่วนชื่อ "ดาวแคระขาว" ตั้งโดย วิลเลม ลุยเทน ในปี ค.ศ. 1922[4]
ดาวแคระขาวเป็นดาวที่อยู่ในช่วงสุดท้ายของวิวัฒนาการของดาวทุกดวงที่มีมวลไม่มากซึ่งมีปริมาณ 97% ของดาวฤกษ์ที่พบในทางช้างเผือก หลังจากที่ดาวฤกษ์ในแถบลำดับหลักได้จบช่วงที่มีปฏิกิริยาไฮโดรเจนนิวเคลียร์ฟิวชั่นลง มันก็จะขยายเป็นดาวยักษ์แดง และหลอมฮีเลียมเป็นคาร์บอนและออกซิเจนที่ใจกลางโดยกระบวนการ triple-alpha ถ้าดาวยักษ์แดงมีมวลไม่เพียงพอที่จะทำให้ใจกลางมีอุณหภูมิสูงพอที่จะหลอมคาร์บอนได้ มวลเฉื่อยของคาร์บอนและออกซิเจนจะก่อตัวที่ศูนย์กลาง หลังจากนั้นชั้นนอกของดาวก็จะถูกพ่นออกไปกลายเป็นเนบิวลาดาวเคราะห์ ก็จะเหลือเพียงใจกลางที่เป็นดาวแคระขาวไว้[5]
ปกติแล้วดาวแคระขาวจะประกอบไปด้วยคาร์บอนและออกซิเจนและมีความเป็นไปได้ที่ใจกลางมีอุณหภูมิเพียงพอที่จะหลอมคาร์บอนแต่ไม่ใช่นีออน นอกจากว่าจะก่อตัวเป็นดาวแคระขาวออกซิเจน-นีออน-แมกนีเซียม[6] ดาวแคระขาวฮีเลียมบางดวง[7][8]ก่อตัวมาจากการสูญเสียมวลในระบบดาวคู่
เนื่องจากธาตุที่มีอยู่ในดาวแคระขาวไม่อาจทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชั่นได้อีกต่อไป ดังนั้นดาวแคระขาวจึงไม่มีแหล่งพลังงานจากปฏิกิริยานิวเคลียร์ฟิวชั่นที่จะสร้างความร้อนเพียงพอที่จะต้านการยุบตัวเนื่องจากแรงโน้มถ่วงได้ (ดาวดำรงอยู่ได้ด้วยแรงดัน electron degeneracy เท่านั้น) และทำให้ดาวมีความหนาแน่นสูง จากฟิสิกส์ของ degeneracy สามารถหามวลมากที่สุดของดาวแคระขาวที่ไม่หมุนรอบตัวเองเท่าที่จะมีได้ โดยค่านี้เรียกว่าขีดจำกัดจันทรสิกขา ซึ่งมีค่าประมาณ 1.4 เท่าของมวลของดวงอาทิตย์ ถ้ามีค่ามากกว่านี้ จะไม่สามารถพยุงความดัน degeneracy ได้ (ดาวแคระขาวคาร์บอน-ออกซิเจนก็มีมวลอยู่ในช่วงนี้) ถ้ามวลสารมีการถ่ายเทจากคู่ของมันจะเกิดการระเบิดขึ้นเป็นซูเปอร์โนวาชนิด Ia ซึ่งกระบวนการนี้เรียกว่า carbon detonation[1][5] (ตัวอย่างของซูเปอร์โนวาชนิดนี้ที่โด่งดังที่สุดคือ SN 1006)
หลังจากดาวแคระขาวที่มีอุณหภูมิสูงเกิดการก่อตัวและขาดแหล่งพลังงานจากปฏิกิริยานิวเคลียร์ฟิวชั่นแล้ว มันจะยังคงแผ่รังสีต่อไปและเย็นตัวลง นั่นหมายความว่า การแผ่รังสีในช่วงแรกจะเป็นแบบอุณหภูมิสูง ส่วนช่วงหลังจะแผ่รังสีน้อยลงและมีสีแดงมากขึ้น เมื่อเวลาผ่านไปดาวแคระขาวจะมีอุณหภูมิต่ำลงจนไม่แผ่รังสีในช่วงคลื่นที่มองเห็นได้ ก็จะกลายเป็นดาวแคระดำที่เยือกเย็น อย่างไรก็ตาม เพราะว่าไม่มีดาวแคระขาวดวงใดแก่กว่าอายุเอกภพ และดาวแคระขาวที่เก่าแก่ที่สุดก็ยังคงแผ่รังสีด้วยอุณหภูมิพันกว่าเคลวิน ดังนั้นจึงไม่มีดาวแคระดำในเอกภพ
การค้นพบ
ดาวแคระขาวที่ถูกค้นพบเป็นดวงแรกอยู่ในระบบดาวสามดวงใน 40 Eridani ซึ่งประกอบไปด้วยดาวสว่างในแถบลำดับหลัก 40 Eridani A ซึ่งโคจรอยู่ใกล้กับระบบดาวคู่ซึ่งมีดาวแคระขาว 40 Eridani B และดาวแคระแดงในแถบลำดับหลัก 40 Eridani C ฟรีดดริค วิลเฮล์ม เฮอร์เชล ได้ค้นพบคู่ดาว 40 Eridani B/C ตั้งแต่วันที่ 31 มกราคม ค.ศ. 1783[9] ต่อมา Friedrich Georg Wilhelm Struve ได้เฝ้าสังเกตในปี 1825 และ Otto Wilhelm Struve เฝ้าสังเกตในปี 1815[10][11] ครั้นถึงปี ค.ศ. 1910 Henry Norris Russel, Edward Charles Pickering และ Williamina Fleming จึงได้ค้นพบว่า ทั้ง ๆ ที่มันเป็นดาวที่จางแสงมาก แต่ 40 Eridani B จัดเป็นดาวที่มี spectral type A หรือมีแสงสีขาว[4] ในปี 1939 Russell มองย้อนไปในการสำรวจ[3]
ผมได้ไปเยี่ยมเพื่อนและผู้เอื้อเฟื้อสนับสนุนเงิน ศาสตราจารย์ เอ็ดเวิร์ด ซี. พิกเคอริง ด้วยลักษณะนิสัยที่มีอัธยาศัยดี เขาจึงอาสาไปสำรวจสเปกตรัมของดาวทุกดวงรวมถึงเปรียบเทียบดาวแต่ละดวงด้วยและสำรวจพารัลแลกซ์ของดวงดาวที่ Hinks และผมได้ทำไว้ที่แคมบริดจ์, และผมก็ได้แลกเปลี่ยนความคิดเห็น ชิ้นงานประจำวันที่ชัดเจนตรวจสอบได้ให้ผลดี นั่นทำให้การสำรวจของดาวที่มีแมกนิจูดสัมบูรณ์ต่ำทุกดวงมี Spectral class M ในการสนทนาในหัวข้อนี้ ผมถามพิกเคอริงเกี่ยวกับความแน่นอนในดาวไม่สว่างอื่น ๆ ที่ไม่ได้อยู่ในรายการของผมและกล่าวถึง 40 Eridani B ที่ไม่ธรรมดา ด้วยลักษณะนิสัยของเขา เขาก็ส่งบันทึกถึงออฟฟิศของหอดูดาวและก่อนหน้านั้นไปนาน คำตอบมาถึงว่าสเปกตรัมของดาวคือ A ผมรู้พอเกี่ยวกับมันกระทั่ง Plaleozoic ด้วยซ้ำ ผมรู้ทันทีที่มันไม่สอดคล้องอย่างมากระหว่างที่พวกเราจะเรียกมันว่าค่าของความสว่างพื้นผิวและความหนาแน่นเป็นไปได้ ผมต้องแสดงว่าผมไม่เพียงรู้สึกสงสัยเท่านั้นแต่ยังรู้สึกสลดด้วย ข้อยกเว้นนี้ดูเหมือนจะเป็นกฎของพฤติกรรมของดาวที่สวยงาม แต่ Pickering ยิ้มให้ผมและพูดว่ามันเป็นข้อยกเว้นที่นำไปสู่ความรู้อันก้าวหน้า และแล้วดาวแคระขาวก็เข้ามาสู่ขอบข่ายการศึกษาของผม!
— วอลเตอร์ อดัมส์ อธิบายถึง Spectral type ของดาว 40 Eridani B อย่างเป็นทางการในปี 1914[12]
ดาวคู่ของดาวซิริอุส คือดาวซิริอุส บี ถูกค้นพบเป็นลำดับถัดมา ในระหว่างศตวรรษที่ 19 การวัดตำแหน่งของดาวบางดวงแม่นยำพอที่จะวัดการเปลี่ยนแปลงน้อย ๆ ได้ ฟรีดดริค เบสเซล ใช้เครื่องมือที่มีความแม่นยำในการระบุว่าดาวซิริอุสและดาวโปรซิออนเปลี่ยนแปลงตำแหน่งได้ ในปี 1844 เขาทำนายว่าทั้งคู่มีดาวคู่ที่เรามองไม่เห็น[13]
ถ้าเราจะพิจารณาให้ซิริอุสและโปรซิออนเป็นดาวคู่ การเคลื่อนที่ของมันก็คงไม่ทำให้ตกใจ เราคงต้องยอมรับว่ามันเป็นสิ่งจำเป็นและคงต้องตรวจสอบหาความจริงเกี่ยวกับจำนวนของมันด้วยการสังเกตการณ์ แต่แสงไม่ใช่คุณสมบัติจริงของมวล การมีอยู่ของดาวที่มองเห็นได้ด้วยตาเปล่านับไม่ถ้วนสามารถพิสูจน์ได้ว่าไม่มีอะไรต่อต้านการมีอยู่ของดาวที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า 1 ดวง
เบสเซลประมาณคาบการโคจรคร่าว ๆ ของคู่ของดาวซิริอุสไว้ที่ครึ่งศตวรรษ[13] C.H.F.Peter เป็นผู้คำนวณคาบโคจรได้ในปี ค.ศ. 1851[14] แต่ล่วงไปจนกระทั่ง 31 มกราคม ค.ศ. 1862 อัลแวน เกรแฮม คลาร์คจึงได้ค้นพบดาวอีกดวงหนึ่งใกล้ดาวซิริอุส ซึ่งก่อนหน้านี้ไม่เคยสังเกตเห็นมาก่อน และต่อมาจึงสามารถระบุยืนยันได้ว่าเป็นดาวคู่ของมันนั่นเอง[14] ในปี ค.ศ. 1915 วอลเตอร์ อดัมส์ จึงประกาศว่าสเปคตรัมของดาวซิริอุส บี มีลักษณะเหมือนกันกับดาวซิริอุส[15]
ครั้นถึงปี ค.ศ. 1917 เอเดรียน แวน แมเนนได้ค้นพบดาวแวนแมเนน ซึ่งเป็นดาวแคระขาวเดี่ยว[16] ดาวแคระขาวทั้งสามดวงที่ได้รับการค้นพบเป็นครั้งแรกนี้ เรียกชื่อกันต่อมาว่าเป็น ดาวแคระขาวดั้งเดิม (classical white dwarfs) [3] ในเวลาต่อมามีการค้นพบดาวสีขาวจางแสงหลายดวงที่มีการเคลื่อนที่เฉพาะสูง บ่งชี้ว่ามันน่าจะเป็นดาวฤกษ์ใกล้โลกที่มีความส่องสว่างน้อย หรืออีกนัยหนึ่งคือเป็นดาวแคระขาวนั่นเอง วิลเลม ลุยเทน เป็นคนแรกที่ใช้คำว่า ดาวแคระขาว (White dwarf) ในขณะที่เขากำลังพิจารณาชนิดสเปกตรัมของดาวในปี 1922[4][17][18][19][20] และอาเทอร์ สแตนลีย์ เอ็ดดิงตัน ได้นำมาใช้อย่างแพร่หลาย อย่างไรก็ดี แม้จะมีข้อสมมุติฐานเช่นนี้อยู่ แต่กว่าจะสามารถพิสูจน์ยืนยันบรรดาดาวแคระขาวที่ค้นพบในยุคแรกซึ่งไม่ใช่ ดาวแคระขาวดั้งเดิม ก็ต้องล่วงไปจนถึงปลายคริสต์ทศวรรษ 1930 เมื่อดาวแคระขาว 18 ดวงถูกสำรวจในปี 1939 ลุยเทนและนักดาราศาสตร์คนอื่นพยายามจากหาดาวแคระขาวต่อไปในทศวรรษ 1940 ในปี 1950 ดาวแคระขาวมากกว่าร้อยดวงเป็นที่รู้จักและปี 1999 ดาวแคระขาวมากกว่า 2,000 ดวงเป็นที่รู้จัก ตั้งแต่นั้นมา Sloan Digital Sky Survey ก็ค้นพบมากกว่า 9,000 ดวง ส่วนใหญ่เป็นดาวใหม่[21]
ความสัมพันธ์ระหว่างมวลกับรัศมีและขีดจำกัดมวล
เป็นการง่ายที่จะหาความสัมพันธ์อย่างคร่าว ๆ ระหว่างมวลกับรัศมีโดยใช้การใช้ Energy minimization argument พลังงานของดาวแคระขาวสามารถประมาณได้จากการรวมกันของพลังงานศักย์โน้มถ่วงและพลังงานจลน์ พลังงานศักย์โน้มถ่วงของหน่วยมวลของดาวแคระขาว Eg จะคือ -GM/R เมื่อ G เป็นค่าคงที่แรงโน้มถ่วง M เป็นมวลของดาวแคระขาวและ R เป็นรัศมี พลังงานจลน์ต่อหน่วยมวล Ek ขั้นต้นจะหาได้จากการเคลื่อนที่ของอิเล็กตรอน ดังนั้นจึงมีค่าประมาณ N p2/2m เมื่อ p เป็นโมเมนตัมเฉลี่ยของอิเล็กตรอน m คือมวลอิเล็กตรอนและ N คือจำนวนอิเล็กตรอนต่อหน่วยมวล เพราะอิเล็กตรอน degenerate ดังนั้นจึงสามารถประมาณ p ได้จากหลักความไม่แน่นอนของโมเมนตัม Δp จาก ΔpΔx ในออร์เดอร์ของ ค่าคงที่ของพลังค์ ħ และ Δx คือระยะทางเฉลี่ยระหว่างอิเล็กตรอนซึ่งประมาณ n-1/3 นั่นคือ รากที่สามของจำนวนความหนาแน่น เมื่อ n คือจำนวนอิเล็กตรอนต่อหน่วยปริมาตร เพราะว่า N M อิเล็กตรอนในดาวแคระขาวและปริมาตรของมันอยู่ในออร์เดอร์ R3 n จึงอยู่ในออร์เดอร์ของ N M/R3
ในการพิสูจน์หาพลังงานจลน์ต่อหน่วยมวล Ek หาจาก
ดาวแคระขาวจะอยู่ในสภาวะสมดุลเมื่อ Eg + Ek มีค่าต่ำสุด จากจุดนี้จึงสามารถเปรียบเทียบพลังงานศักย์และพลังงานจลน์ได้ ดังนั้นเราจึงหาความสัมพันธ์ของมวลและรัศมีโดยการคำนวณขนาดของมัน
พิสูจน์หารัศมี R, ให้
ตัด N ซึ่งขึ้นกับองค์ประกอบของดาวแคระขาวและค่าคงที่จักรวาลทิ้ง เหลือความสัมพันธ์ของมวลกับรัศมี
นั่นคือรัศมีของดาวแคระขาวแปรผกผันตามสัดส่วนของรากที่สามของมวลเพราะการวิเคราะห์นี้ไม่ใช้สูตรสัมพัทธภาพ คือ p2/2m สำหรับพลังงานจลน์ ถ้าเราวิเคราะห์สถานการณ์ที่ความเร็วของอิเล็กตรอนในดาวแคระขาวใกล้เคียงกับความเร็วแสงมาก c เราต้องแทน p2/2m ด้วยการประมาณ relativistic p c สำหรับพลังงานจลน์ ถ้าแทนด้วยการประมาณนี้จะได้
ถ้าเราเปรียบเทียบกับขนาดของ Eg เราจะพบว่า R ตัดออกจากมวลและถูกบังคับให้กลายเป็น
จะเห็นว่าว่าเมื่อเราเพิ่มมวลให้กับดาวแคระขาว รัศมีของมันก็จะลดลง จากการใช้หลักความไม่แน่นอนจะพบว่าโมเมนตัมหรือความเร็วจะเพิ่มขึ้นจนความเร็วใกล้เคียงแสง การใช้ทฤษฎีสัมพัทธภาพทั่วไปจะแน่นอนแม่นยำที่สุด หมายความว่ามวล M ของดาวแคระขาวจะต้องเข้าใกล้ Mlimit
เพื่อที่จะทำให้การคำนวณความสัมพันธ์ระหว่างมวลและรัศมีเพิ่มขึ้นและขีดจำกัดมวลของดาวแคระขาวแม่นยำขึ้น ต้องคำนวณสมการสถานะซึ่งจะอธิบายถึงความสัมพันธ์ระหว่างความหนาแน่นและความดันในสสารของดาวแคระขาวด้วย ถ้าให้ความหนาแน่นและความดันทั้งคู่เป็นฟังก์ชันของรัศมีจากศูนย์กลางของดาว สมการของระบบก็จะประกอบด้วย hydro static equation พร้อมกับสมการสถานะจะสามารถแก้สมการเพื่อหาโครงสร้างของดาวแคระขาวในสภาวะสมดุลได้ ในกรณีของ non-relativistic เราจะยังคงหาได้ว่ารัศมีแปรผกผันกับสัดส่วนของรากที่สามของมวล การแก้โดย Relativistic จะได้ผลลัพธ์ที่เปลี่ยนแปลงไปคือรัศมีจะกลายเป็น 0 เมื่อมีมวลเท่ากับขีดจำกัดมวล (หรือขีดจำกัดจันทรสิกขา) เมื่อดาวแคระขาวไม่สามารถที่จะถูกพยุงด้วยความดัน electron degeneracy ได้ จากกราฟแสดงให้เห็นถึงผลลัพธ์ที่ได้จากการคำนวณเส้นสีน้ำเงินคือแบบจำลองการเปลี่ยนแปลงรัศมีและมวลซึ่ง non-relativistic และเส้นสีเขียวคือ relativistic แบบจำลองทั้งสองถูกแก้โดยให้ดาวแคระขาวเป็นแก๊สเฟอร์มิเย็นในสภาวะสมดุล hydrostatic ค่าเฉลี่ยของมวลโมเลกุลกำหนดให้เป็น 2 มวลและรัศมีถูกวัดในหน่วยเท่าของดวงอาทิตย์
ในการคำนวณทั้งหมดสมมติให้ดาวแคระขาวไม่หมุน ถ้าดาวแคระขาวหมุน สมการ Hydrostatic จะต้องคิดแรงสู่ศูนย์กลางเทียมในกรอบหมุนด้วย สำหรับดาวแคระขาวที่หมุนอย่างสม่ำเสมอ ขีดจำกัดมวลจะเพิ่มขึ้นเพียงเล็กน้อย ในปี 1947 Fred Hoyle ได้แสดงให้เห็นถึงดาวหมุนอย่างไม่สม่ำเสมอและไม่คิดถึงความหนืดว่ามวลจะไม่มีขีดจำกัดสำหรับแบบจำลองที่เป็นไปได้ของดาวแคระขาวที่อยูในสภาวะสมดุลสถิตอย่างไรก็ตามมันก็จะอยู่ในสภาวะสมดุลไดนามิก
![]() |
แบบจำลองความสัมพันธ์ระหว่างรัศมีและมวล
|
ไม่มีความคิดเห็น:
แสดงความคิดเห็น